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Abstract

Alves, Antonio Pedro Santos; Kalinowski, Marcos (Advisor); (Co-
Advisor). Requirements Engineering for ML-Enabled Systems:
Status Quo and Problems. Rio de Janeiro, 2023. 52p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Systems that use Machine Learning (ML) have become commonplace
for companies that want to improve their products, services, and processes.
Literature suggests that Requirements Engineering (RE) can help to address
many problems when engineering ML-Enabled Systems. However, the state of
empirical evidence on how RE is applied in practice in the context of ML-
enabled systems is mainly dominated by isolated case studies with limited
generalizability. We conducted an international survey to gather practitioner
insights into the status quo and problems of RE in ML-enabled systems. We
gathered 188 complete responses from 25 countries. We conducted quantitative
statistical analyses on contemporary practices using bootstrapping with con-
fidence intervals and qualitative analyses on the reported problems involving
open and axial coding procedures. We found significant differences in RE prac-
tices within ML projects, some of them have been reported on literature and
some are totally new. For instance, (i) RE-related activities are mostly con-
ducted by project leaders and data scientists, (ii) the prevalent requirements
documentation format concerns interactive Notebooks, (iii) the main focus of
non-functional requirements includes data quality, model reliability, and model
explainability, and (iv) main challenges include managing customer expecta-
tions and aligning requirements with data. The qualitative analyses revealed
that practitioners face problems related to lack of business domain understand-
ing, unclear requirements, and low customer engagement. These results help to
provide a better understanding of the adopted practices and which problems
exist in practical environments. We put forward the need to adapt further and
disseminate RE-related practices for engineering ML-enabled systems.

Keywords
Requirements Engineering; Machine Learning; Survey.



Resumo

Alves, Antonio Pedro Santos; Kalinowski, Marcos; . Engenharia de Re-
quisitos para Sistemas Integrados com Componentes de Apren-
dizado de Máquina: Status Quo e Problemas. Rio de Janeiro, 2023.
52p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Sistemas que usam Aprendizado de Máquina, doravante Machine Lear-
ning (ML), tornaram-se comuns para empresas que deseajam melhorar seus
produtos, serviços e processos. A literatura sugere que a Engenharia de Re-
quisitos (ER) pode ajudar a explicar muitos problemas relacionados à enge-
nharia de sistemas inteligentes envolvendo componentes de ML (ML-Enabled
Systems). Contudo, o cenário atual de evidências empíricas sobre como ER é
aplicado na prática no contexto desses sistemas é amplamente dominado por
estudos de casos isolados com pouca generalização. Nós conduzimos um survey
internacional para coletar informações de profissionais sobre o status quo e pro-
blemas de ER para ML-Enabled Systems. Coletamos 188 respostas completas
de 25 países. Realizamos uma análise quantitativa sobre as práticas atuais uti-
lizando bootstrapping com intervalos de confiança; e análises qualitativas sobre
os problemas reportados através de procedimentos de codificação open e axial.
Encontramos diferenças significativas nas práticas de ER no contexto de proje-
tos de ML, algumas já reportadas na literatura e outras totalmente novas. Por
exemplo, (i) atividades relacionadas à ER são predominantemente conduzidas
por líderes de projeto e cientistas de dados, (ii) o formato de documentação
predominante é baseado em Notebooks interativos, (iii) os principais requisi-
tos não-funcionais incluem qualidade dos dados, confiança e explicabilidade no
modelo, e (iv) os principais desafios consistem em gerenciar a expectativa dos
clientes e alinhar requisitos com os dados disponíveis. As análises qualitati-
vas revelaram que os praticantes enfrentam problemas relacionados ao baixo
entendimento sobre o domínio do negócio, requisitos pouco claros e baixo enga-
jamento do cliente. Estes resultados ajudam a melhorar o entendimento sobre
práticas adotadas e problemas existentes em cenários reais. Destacamos a ne-
cessidade para adaptar ainda mais e disseminar práticas de ER relacionadas à
engenharia de ML-Enabled Systems.
Palavras-chave

Engenharia de Requisitos; Aprendizado de Máquina; Survey.
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If I have seen further, it is by standing on
the shoulders of giants.
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1
Introduction

1.1
Context and Motivation

At the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) of
2012, the world was astonished by a Machine Learning (ML) model halving
the second-best error rate on a very difficult computational task: image
classification (KRIZHEVSKY; SUTSKEVER; HINTON, 2017). Nowadays,
ML models have surpassed even human performance and reached a level where
the classification task is essentially solved (LUNDERVOLD; LUNDERVOLD,
2019). In fact, with the increase of computational power, ML can nowadays
deal with larger and more difficult problems, outperforming other approaches
also in different tasks, such as natural language processing (PETERS et al.,
2018), speech recognition, and synthesis tasks (XIONG et al., 2018). With
companies noticing the potential that ML could have on their products and
services, having ML components as a part of a larger system, ML-enabled
systems became more and more commonplace.

However, even big tech companies like Google and Microsoft report chal-
lenges related to building reliable and maintainable ML-enabled systems, not
only for the inherent ML coding complexity but also due to difficulties concern-
ing requirements (SCULLEY et al., 2015; KIM et al., 2017). Indeed, the shift
from engineering conventional software systems to ML-enabled systems comes
with challenges regarding idiosyncrasies of such systems, such as addressing
additional qualities properties (e.g., fairness and explainability), dealing with
a high degree of iterative experimentation, and facing unrealistic assumptions
(VILLAMIZAR; ESCOVEDO; KALINOWSKI, 2021; NAHAR et al., 2023).
Furthermore, the non-deterministic nature of ML-enabled systems poses chal-
lenges from the viewpoint of Software Engineering (SE) (GIRAY, 2021).

Literature suggests that Requirements Engineering (RE) can help ad-
dress problems related to engineering ML-enabled systems (VOGELSANG;
BORG, 2019; VILLAMIZAR; ESCOVEDO; KALINOWSKI, 2021; AHMAD
et al., 2021). However, research on this intersection mainly focuses on using
ML techniques to support RE activities rather than exploring how RE can
improve the development of ML-enabled systems (DALPIAZ; NIU, 2020). It
is worth mentioning that, on traditional software, RE is intrinsically volatile
and complex (FERNÁNDEZ et al., 2017), and in the context of ML-enabled
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systems development, it is typically the most difficult activity (ISHIKAWA;
YOSHIOKA, 2019). This difficulty is increased by the current state of empir-
ical evidence on how RE is applied in practice in the context of such systems,
which is still weak and dominated by isolated studies.

1.2
Goal

The goal of this dissertation is to investigate the state of practice and
problems of RE for ML-enabled systems, helping to steer future research on
the topic. In particular, we aim to provide insights regarding (i) roles that
are typically in charge of requirements, (ii) which requirements are typically
elicited and documented, (iii) which non-functional requirements typically play
a major role in ML-enabled systems development, (iv) which RE activities are
perceived as most difficult, and lastly (v) what RE-related problems do ML
practitioners face.

1.3
Research Method

In order to achieve our goal, we analyze data from an international
survey conducted to characterize the pain in developing ML-enabled systems.
In this dissertation, we focused on the survey’s RE-related questions. In
total, 188 practitioners from 25 countries completely answered the survey.
Based on practitioners’ responses, we conducted quantitative and qualitative
analyses, where we adopted bootstrapping techniques with confidence intervals
to strengthen statistical validity (LUNNEBORG, 2001; WAGNER et al., 2019)
on quantitative analysis, and we used open and axial coding procedures from
Grounded Theory (STRAUSS A.; CORBIN, 2009) on qualitative analysis.

1.4
Results

Our results revealed important differences in how RE is being performed
in the ML-enabled system context. For instance, requirements engineers do not
play a representative role within the ML-enabled system context in which RE-
related activities are typically performed by project leaders and data scientists.
Furthermore, requirements are being mainly documented within interactive
Notebooks, followed closely by user stories and simple requirements lists.
The prevalence of Non-Functional Requirements (NFRs) within these systems
includes specific ML-NFRs, such as data quality, model reliability, and model
explainability. Moreover, we also revealed difficulties in managing customer
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expectations and in aligning requirements with data. The main reported
problems are comparable to those in traditional RE, including the lack of
problem and business domain understanding, unclear goals and requirements,
low customer engagement, and problems with managing expectations and
communication.

1.5
Outline

The remainder of this work is organized as follows. Chapter 2 provides
the background and an overview of related work.

Chapter 3 describes the goal and research questions that guided this
research. Therefrom details the methodology behind our analyses and how the
bootstrapping technique, axial and open coding were applied.

Chapter 4 presents the results, while Chapter 5 presents the threats to
the validity of our study and discusses the obtained results and their practical
implications.

Finally, Chapter 6 contains the concluding remarks and describes future
work possibilities.



2
Background and Related Work

2.1
Introduction

Software Engineering plays a fundamental role when developing reliable,
maintainable, and functional systems. In this context, Requirements Engineer-
ing is extremely important due to its contribution to the success of software,
although its customer dependency, volatility, and interdisciplinary nature turn
it into a very difficult discipline to investigate (FERNÁNDEZ et al., 2017).
RE has been characterized by its uncertainty and the participation of interdis-
ciplinary stakeholders in order to meet the customers’ needs on the developed
software (WAGNER et al., 2019).

The usage of ML-enabled systems has grown considerably in recent
years, resulting in increasing demands for high-quality within this context
(VILLAMIZAR; ESCOVEDO; KALINOWSKI, 2021), despite the difficulty
of building reliable and maintainable ML-enabled systems (SCULLEY et al.,
2015). ML involves algorithms that analyze data to create models capable
of making predictions on unseen data (MITCHELL, 1997). Thus, unlike
traditional systems, ML-enabled systems learn from data instead of being
programmed with predefined rules. This shift changes the way of designing
such kind of system once poor-quality requirements (e.g., data, customer
expectations, quality metrics) can lead to inaccurate results, and RE is an
important tool in this scenario. An example comes from Microsoft, where the
main actors in ML development are Data Scientists, and despite their high
education level - more than 40% professionals have a master’s degree - they
struggle not only with algorithms and scale, which are inherent to ML-enabled
systems but mostly with RE challenges (KIM et al., 2017).

Therefore, in this chapter, we present an overview of the difficulties
and challenges reported on RE for ML-enabled systems, as well as the main
contributions on the topic.

2.2
RE for ML-Enabled Systems

RE and ML have a special connection. An ML model can be seen as a
requirements specification based on training data since the data can be seen
as a learned description of how the ML model shall behave (KAESTNER,
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2020). In this manner, when developing ML models, we need to identify
relevant and representative data, validate models, and balance model-related
user expectations (e.g., accuracy versus inference time), just as in RE for
traditional systems where we need to identify representative stakeholders,
validate specifications with customers, and address conflicting requirements.
Thus, despite being known and having the same essence when we think about
traditional software, handling requirements on intelligent systems is still the
most difficult activity for ML development (ISHIKAWA; YOSHIOKA, 2019),
and the reasons for it vary.

First of all, ML-enabled systems assume that there will be an ML
model that solves a problem, but how do professionals should evaluate it?
Source code review and exhaustive coverage tests, which are commonly used
in testing phases, are not appropriate to it once they are intrinsically hard
to interpret (BORG et al., 2019). Moreover, the expected steps for handling
requirements in traditional software, such as analysis and specification in
preliminary development phases and acceptance at the final phases, are not
possible in such systems given that this would demand an estimate of different
metrics (e.g., accuracy) in advance (ISHIKAWA; YOSHIOKA, 2019). Another
challenge is regarding NFRs for these systems. There is no holistic view on
NFRs for ML-enabled systems as most of the research focuses on individual
ones, such as privacy, processing time, and data quality (HORKOFF, 2019).
ML-enabled systems also face problems regarding specification, elicitation,
validation, and documentation (KUWAJIMA; YASUOKA; NAKAE, 2020).

Agent-based SE and Goal-Oriented Requirements Engineering (GORE)
research are potential contributors to overcome these difficulties (BELANI;
VUKOVIĆ; CAR, 2019), as well as contributions from RE for SAS, which
are data-based systems and face some similar data difficulties, such as de-
layed software decisions due to data availability (KEPHART; CHESS, 2003;
MORANDINI et al., 2017). Nevertheless, the similarities regarding some com-
mon difficulties, RE for ML still faces its own challenges (CHALLA; NIU;
JOHNSON, 2020; LWAKATARE et al., 2020; MARTÍNEZ-FERNÁNDEZ et
al., 2022). In this sense, we can decompose the main contributions of RE for
ML-enabled systems into theoretical studies and industrial findings.

2.2.1
Theoretical Studies

It is worth mentioning how ML is useful to SE activities, however, it
is less common to see studies tackling the opposite, how SE can be useful
to engineer ML-enabled systems (KUMENO, 2019; NASCIMENTO et al.,
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2020; LORENZONI et al., 2021; MARTÍNEZ-FERNÁNDEZ et al., 2022).
Focusing on RE, we observe the same behavior. Challa et al. (CHALLA;
NIU; JOHNSON, 2020) is one of the studies that showed concern regarding
requirements and project success, in fact, how faulty requirements led to
unexpected results in deep learning systems.

Ahmad et al. (AHMAD et al., 2021) and Villamizar et al. (VIL-
LAMIZAR; ESCOVEDO; KALINOWSKI, 2021) provided insightful results
about practices and challenges regarding RE for ML-enabled systems through
systematic literature reviews. Ahmad et al. (AHMAD et al., 2021) found 27
papers discussing major modeling languages in use to handle requirements, ap-
plication domains, and main limitations on RE for ML. Papers that were em-
pirical studies were focused on Autonomous Driving, Computer Vision, Fraud
Detection, and the Medical domain, while non-empirical studies (e.g., theo-
retical studies and not yet evaluated) tackled ethics, trust, and explainability
domains. Regardless of the domain, most studies mainly use UML and GORE
as modeling languages to handle requirements. Finally, the main limitations
and outstanding challenges reported on RE for ML were in terms of the over-
confidence when using AI, vagueness and complexity when defining require-
ments, and the trade-off between NFRs that must be prioritized (e.g., model
reliability versus model transparency).

Villamizar et al. (VILLAMIZAR; ESCOVEDO; KALINOWSKI, 2021)
found 35 papers discussing requirements for ML. Most of them focused their
contributions on analysis and approaches to deal with requirements, with
special attention on the challenges of defining business goals and problem
understanding. Also, fundamental NFRs for ML-enabled systems that are
not commonly addressed in traditional software development were presented,
such as security, explainability, data quality, fairness, and transparency. Lastly,
challenges that are preventing progress in the area of RE for ML were discussed,
such as the lack of validation techniques and difficulty in dealing with customer
expectations.

The difference between what is being studied by researchers and what
is being used in practice tends to be harmful for SE practical adoption
(JACOBSON; MEYER; SOLEY, 2009; JACOBSON; SPENCE, 2009), and
this extends to the RE context. Besides highlighting difficulties and gaps to
be filled on RE for ML-enabled systems, both Ahmad et al. (AHMAD et al.,
2021) and Villamizar et al. (VILLAMIZAR; ESCOVEDO; KALINOWSKI,
2021) warned about most papers being validation research or opinion papers,
and few of them proposing practical solutions. Having a wider picture of
current industrial practices and challenges could help to overcome this lack by
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clarifying the current needs of practitioners engineering ML-enabled systems
(LWAKATARE et al., 2020).

2.2.2
Industrial Findings

From an industry perspective, ML coding is a small part of several other
steps of ML-enabled system engineering (SCULLEY et al., 2015), and RE is
a potential tool to accelerate the process of maturing ML development and
industrial AI adoption (SCHARINGER et al., 2022). In this way, gathering
empirical evidence from the industry is essential to bridge the gap between
theory and practice. Collecting practitioners’ insights becomes imperative to
identify real-world challenges and current practices accurately. Such studies can
provide a better understanding of the practical problems that can guide the
advancement of new RE for ML techniques and their effective implementation
in real-world scenarios. In the following, we present studies conducted within
industry settings involving practitioners to understand RE for ML.

Vogelsang and Borg (VOGELSANG; BORG, 2019) conducted interviews
with four data scientists to find out the current practices and what should
be done to handle and surpass the challenges regarding requirements. They
suggest the need for new RE for ML solutions or at least the adaptation of
existing ones. Habibullah et al. (HABIBULLAH; GAY; HORKOFF, 2023)
conducted interviews and a survey to understand how NFRs are perceived
among ML practitioners. They identified the degree of importance practitioners
place on different NFRs, explored how NFRs are defined and measured, and
identified associated challenges.

Recently, Scharinger et al. (SCHARINGER et al., 2022) revealed the
worries at Siemens regarding problems that any ML project is susceptible to,
listing ML Pitfalls, such as lack of decision quality baselines and underestimat-
ing costs. They believe that RE is the key to both avoiding these pitfalls and
ripening ML development. Lastly, Nahar et al. (NAHAR et al., 2023) identi-
fied challenges in building ML-enabled systems through a systematic literature
survey aggregating existing studies involving interviews or surveys with prac-
titioners of multiple projects. With respect to RE, they reported challenges
related to unrealistic expectations from stakeholders, vagueness in ML prob-
lem specifications, and additional requirements such as regulatory constraints.
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2.3
Concluding Remarks

In this chapter, we presented an overview of the difficulties and challenges
regarding RE for ML-enabled systems and what are the main contributions
within this area. We observed valuable theoretical contributions, but we
recognize the need for industrial ones to bridge the gap between theory and
practice. Unfortunately, empirical evidence on how RE is applied in practice
in the context of ML-enabled systems is still weak and dominated by isolated
studies.



3
Research Method

3.1
Introduction

In this chapter, we first define our goal and research questions, consid-
ering the importance of industrial insights for future research on RE for ML-
enabled systems. Thereafter, we detail the employed research methodology,
providing details on the survey design and on the methods for data collection
and analysis.

3.2
Goal

Empirical evidence is fundamental to overcome the gap between theory
and practice. In this sense, the goal of this dissertation is to investigate the
state of practice and problems of RE for ML-enabled systems, sharing
our findings with the community to help steer future research on the topic.

3.3
Research Questions

In order to achieve the presented goal, we set up two research questions
presented in Table 3.1.

In RQ1 , we aim to reveal how practitioners are currently approaching
RE for ML, identifying trends, prevalent methods, and the extent to which
the industry aligns with established practices. In RQ2 , we aim to identify the
ML-enabled systems challenges that are crucial in this investigation, once they
inform the development of strategies to mitigate difficulties, helping to guide
future research on the topic in a problem-driven manner.

In Table 3.2, we refine RQ1 into more specific questions in order to
better detail contemporary practices. These questions address who is in charge

Table 3.1: Dissertation research questions

ID Description

RQ1 What are the contemporary practices on RE for ML-enabled
systems?

RQ2 What are the main problems faced during the problem under-
standing and requirements ML life cycle stage?
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Table 3.2: Details of research question 1

ID Description

RQ1.1 Who is addressing the requirements of ML-enabled system
projects?

RQ1.2 How are requirements typically elicited in ML-enabled system
projects?

RQ1.3 How are requirements typically documented in the ML-
enabled system projects?

RQ1.4 Which Non-Functional Requirements do typically play a ma-
jor role in terms of criticality in the ML-enabled system
projects?

RQ1.5 What activities are considered to be most difficult when
defining requirements for ML-enabled systems?

of requirements, how requirements are elicited and documented, critical NFRs,
and particularly challenging activities.

3.4
Survey Design

We designed our survey aiming to gather wide world reports on the
current practices and problems of ML-enabled systems. In order to have a
solid tool, we followed the best practices of survey research (WAGNER et al.,
2020) and carefully conducted the following steps:

Step 1. Initial Survey Design. We conducted a literature review
on RE for ML-enabled systems (VILLAMIZAR; ESCOVEDO; KALI-
NOWSKI, 2021) and combined our findings with previous results on
traditional RE problems (FERNÁNDEZ et al., 2017) and the RE sta-
tus quo on traditional software (WAGNER et al., 2019) to provide the
theoretical foundations for questions and answer options. Therefrom, the
initial survey was drafted by Software Engineering and Machine Learn-
ing researchers from PUC-Rio (Brazil) with experience in R&D projects
involving ML-enabled systems.

Step 2. Survey Design Review. The survey was reviewed and ad-
justed based on online discussions and annotated feedback from Soft-
ware Engineering and Machine Learning researchers from BTH (Swe-
den). Thereafter, the survey was also reviewed by the other co-authors.

Step 3. Pilot Face Validity Evaluation. This evaluation involves a
lightweight review by randomly chosen respondents. It was conducted
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with 18 Ph.D. students taking a Survey Research Methods course at
UCLM (Spain) (taught by my advisor). They were asked to provide
feedback on the clearness of the questions and to record their response
time. This phase resulted in minor adjustments related to usability as-
pects and unclear wording. The answers were discarded before launching
the survey.

Step 4. Pilot Content Validity Evaluation. This evaluation involves
subject experts from the target population. Therefore, we selected five
experienced data scientists developing ML-enabled systems, asked them
to answer the survey, and gathered their feedback. The participants had
no difficulties in answering the survey, and it took an average of 20
minutes. After this step, we considered the survey ready to be launched.

The survey was implemented using the Unipark Enterprise Feedback
Suite. It started with a consent form describing the purpose of the study and
stating that it is conducted anonymously. The remainder was divided into 15
demographic questions (D1 to D15) followed by three specific parts (P1 to P3)
with 17 substantive questions (Q1 to Q17):

[P1] Q1 - Q7: Questions regarding ML life cycle stages and their
problems

[P2] Q8 - Q12: Questions regarding requirements on ML-enabled systems

[P3] Q13 - Q17: Questions regarding deployment and monitoring of ML-
enabled systems

In this dissertation, we focus on the demographics questions that help
us characterize the participants; on P1 questions regarding the perceived
difficulty and relevance over ML life cycle stages, and the main problems
faced on Problem Understanding and Requirements stage; and, lastly, the P2
questions, focused on RE. The complete survey instrument is available in our
open science repository (ALVES et al., 2023a). An excerpt of the substantive
questions related to this dissertation is shown in Table 3.3.
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Table 3.3: Research questions and related survey questions

RQ Survey
No.

Description Type

- ... ... ...
RQ2 Q4 According to your personal experience,

please outline the main problems or dif-
ficulties (up to three) faced during the
Problem Understanding and Require-
ments ML life cycle stage.

Open

- ... ... ...
RQ1.1 Q8 Who is actively addressing the require-

ments of ML-enabled system projects in
your organization?

Closed
(MC)

RQ1.2 Q9 How were requirements typically
elicited in the ML-enabled system
projects you participated in?

Closed
(MC)

RQ1.3 Q10 How were requirements typically
documented in the ML-enabled system
projects you participated in?

Closed
(MC)

RQ1.4 Q11 Which Non-Functional Requirements
(NFRs) typically play a major role in
terms of criticality in the ML-enabled
system projects you participated in?

Closed
(MC)

RQ1.5 Q12 Based on your experience, what activi-
ties do you consider most difficult when
defining requirements for ML-enabled
systems?

Closed
(MC)

- ... ... ...

3.5
Data Collection

Our target population concerns professionals involved in building ML-
enabled systems, including different activities, such as management, design,
and development. Therefore, it includes practitioners in positions such as
project leaders, requirements engineers, data scientists, and developers. We
used convenience sampling, sending the survey link to professionals active in
our partner companies, and also distributed it openly on social media. We
excluded participants that informed having no experience with ML-enabled
system projects. Data collection was open from January 2022 to April 2022. In
total, we received responses from 276 professionals, out of which 188 completed
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all four survey sections. The average time to complete the survey was 20
minutes. We conservatively considered only the 188 fully completed survey
responses.

3.6
Data Analysis Procedures

For data analysis purposes, given that all questions were optional, the
number of responses varies across the survey questions. Therefore, we explicitly
indicate the number of responses when analyzing each question by informing
N = number of responses to that question. Once we considered only 188
responses, the maximum N is 188.

3.6.1
Quantitative Data Procedures

Research questions RQ1.1 - RQ1.5 were related to closed questions in
our survey, so we decided to use inferential statistics to analyze them. Our
population has an unknown theoretical distribution (i.e., the distribution of
ML-enabled system professionals is unknown). In such cases, resampling meth-
ods, like bootstrapping, have been reported to be more reliable and accurate
than inference statistics from samples (LUNNEBORG, 2001; WAGNER et al.,
2020). Hence, we use bootstrapping to calculate confidence intervals for our
results, similar as done in (WAGNER et al., 2019).

In short, bootstrapping involves repeatedly taking samples with replace-
ments and then calculating the statistics based on these samples. For each
question, we take the sample of n responses for that question and bootstrap
S resamples (with replacements) of the same size n. We assume n as the to-
tal valid answers of each question (EFRON; TIBSHIRANI, 1993), and we set
1000 for S, which is a value that is reported to allow meaningful statistics (LEI;
SMITH, 2003). Figure 3.1 summarizes the adopted bootstrapping method.

Worldwide 
ML Professionals

ML Professionals
Survey Participants

Sample Distribution
Size n

Resample  1
Size n

Resample  2
Size n

Resample  1000
Size n

x 997

Statistics
Resample 1

95%
Confidence

Interval

Statistics
Resample 2

Statistics
Resample 1000

Bootstrapped 
ML Professionals 

Distribution

x 997

Figure 3.1: Bootstrapping technique
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3.6.2
Qualitative Data Procedures

For research question RQ2, which seeks to identify the main problems
faced by practitioners involved in engineering ML-enabled systems related
to Problem Understanding and Requirements stage, the corresponding survey
question was designed to be open text. We conducted a qualitative analysis
using open and axial coding procedures from grounded theory (STOL; RALPH;
FITZGERALD, 2016) to allow the problems to emerge from the open-text
responses reflecting the experience of the practitioners. The qualitative coding
procedures were conducted by one researcher and reviewed independently by
four additional researchers from Brazil (1), Sweden (2) and Turkey (1).

3.7
Concluding Remarks

In this chapter, we presented our goal, research questions, and research
method, including the survey design, data collection, and data analysis pro-
cedures for quantitative and qualitative data. The questionnaire, the collected
data, and the quantitative and qualitative data analysis artifacts, including
Python scripts for the bootstrapping statistics and graphs, and the peer-
reviewed qualitative coding spreadsheets, are available in our open science
repository (ALVES et al., 2023a). The study results will be presented in the
next chapter.



4
Results

4.1
Introduction

In this chapter, we first summarize the study population in terms of
demographic and professional profile. Thereafter, we present practitioners’
perceptions about the difficulty and relevance of each ML life cycle stage.
Finally, we delve into the results of our research.

4.2
Study Population

The survey’s participants came from all parts of the world. Each con-
tinent has at least one respondent. In Figure 4.1, we have an overview of
respondents nationality. Brazil, Turkey, Austria, Germany, Italy, and Sweden
were the countries with more participants in the survey, which is expected
once the survey was shared in a convenience sampling strategy where these
countries with the most responses match with the researchers involved.
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Figure 4.1: Participants nationality (N = 175)

Once the survey focused on an industry scenario, we extracted which
company size the participants were currently working in, as presented in
Figure 4.2. Most of the professionals work in big companies (more than 2000
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employees) and the other significant part work in small to medium companies
(from 50 to 250 employees). The fact of big companies leading this statistic
suggests the trend of companies internalizing technologies and processes in
order to prioritize business goals and domains.
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Figure 4.2: Current participants’ company size (N = 177)

Regarding participants’ background, we were able to detail their educa-
tional background in terms of Short Courses, Specializations, Undergraduate,
Master, and Ph.D. degrees. We present an overview of it in Figure 4.3.

In terms of short-term courses (Figure 4.3 (e)), generally available on
online educational platforms such as Coursera1, Udemy2, CodeAcademy3, and
Udacity4, there is a significant focus on topics like Machine Learning, Data
Science, Deep Learning, and Artificial Intelligence. Data Management and
Data Governance also appear to be relevant, especially for the certifications
offered by big tech companies on their products and services, such as Cloud
Management and Data Engineering certifications on Google Cloud Platform
and Azure, from Google and Microsoft, respectively.

Unlike short courses, participants were also asked if they had taken
specialization courses, and the results are presented in Figure 4.3 (b). In this
sense, professionals focused on specializations related to Computer Science
topics, such as Data Science, Software Engineering, Project Management, Big
Data, Business Intelligence, and Web Development. Other topics not directly
related to technology were also present, such as courses focused on Physics and
Optimization. However, these topics, in general, use technology to achieve and
improve results. Other specializations that were less representative included
Econometrics, Marketing, Psychology, and Autonomous Driving.

1https://www.coursera.org/
2https://www.udemy.com/
3https://www.codecademy.com/
4https://www.udacity.com/
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Figure 4.3: Participants educational background

Regarding formal education, most participants have an undergraduate
degree, as shown in Figure 4.3 (a). Computer Science is the most chosen
field, although many professionals have a background in Electrical, Mechan-
ical, and Civil Engineering. In addition to engineers, there were also many
mathematicians and statisticians. Other degrees with fewer responses were
informed, such as Biology, Logistics, Aerospace Engineering, Nuclear Engi-
neering, and Robotics, showcasing the diversity of professionals working with
Machine Learning in the industry.

When we look at graduate courses, such as Master’s and Ph.D. degrees,
the profile is predominantly related to Technology, Mathematics, Engineering,
and Economics. In Figure 4.3 (c), we show that out of the top 6 choices
for Master’s degrees, 5 were related to computer science: Computer Science,
Data Science, Artificial Intelligence, Computer Engineering, and Information
Systems. In addition to these focuses, participants also emphasized socio-
economic and mathematical topics, such as Statistics, Operational Research,
Business Management, and Economics. Professionals with Ph.D. degrees were
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less frequent, but in Figure 4.3 (d), we show that for those who had a
Ph.D., their research focus was mainly in the areas of Computer Science,
and the remainder was divided among Mathematics, Physics, and Computer,
Electrical, and Mechanical Engineering.

It can be said that the majority of professionals who participated in the
survey have an analytical profile with backgrounds in technology, engineering,
and mathematics. This predominant profile is reflected in the roles that these
professionals have in their companies. In Figure 4.4, it is possible to observe
that most participants work as Data Scientists. Other significant roles are
Project Leader, Developer, Solution Architect, and Business Analyst. Lastly,
we have a few practitioners assuming the Requirements Engineer and Test
Manager roles. Despite being representative in the ‘Others’ field, isolated
positions were mentioned, such as CEO, CTO, Operational Research Analyst,
and Machine Learning Engineer.
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Figure 4.4: Participants’ main role (N = 177)

Our respondents are senior professionals in terms of software develop-
ment, as shown in Figure 4.5 (a). However, these professionals have relatively
less experience with Machine Learning projects, as depicted in Figure 4.5 (b).
Despite Machine Learning being a relatively new field, the median experience
of the professionals who answered the survey was three years.
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Figure 4.5: Participants’ experience on software and ML-enabled systems

4.3
Problem Understanding and Requirements ML Life Cycle Stage

In the survey, similar to what was done by Kalinowski et al. (KALI-
NOWSKI et al., 2023), based on the nine ML life cycle stages presented by
Amershi et al. (AMERSHI et al., 2019) and the Cross Industry Standard Pro-
cess for Data Mining (CRISP-DM) industry-independent process model phases
(SCHRÖER; KRUSE; GÓMEZ, 2021), we abstracted seven generic life cycle
stages as shown in Figure 4.6 and asked about their perceived relevance and
difficulty.

Figure 4.6: Seven stages of ML life cycle

The answers are presented in Figure 4.7 and reveal that ML practitioners
are extremely worried about requirements. The Problem Understanding and
Requirements stage is clearly perceived as the most relevant and most complex
life cycle stage.
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Figure 4.7: Perceived relevance and complexity of each ML life cycle stage

4.4
RQ1: Contemporary RE practices for ML-enabled systems

4.4.1
RQ1.1: Who is addressing the requirements of ML-enabled system
projects?

The proportion of roles reported to address the requirements of ML-
enabled system projects within the bootstrapped samples is shown in Figure 4.8
together with the 95 % confidence interval. The N in each figure caption is the
number of participants that answered this question, as previously mentioned.
We report the proportion P of the participants that checked the corresponding
answer and its 95% confidence interval in square brackets.

It is possible to observe that the project lead and data scientists were
most associated with requirements in ML-enabled systems with P = 56.664
[56.435, 56.893] and P = 54.618 [54.376, 54.859], while Requirements
Engineers and Business Analysts had a much lower proportion P = 11.022
[10.875, 11.17] and P = 29.558 [29.347, 29.768], respectively. Developers
and Solution Architects were also significant with P = 21.832 [21.625, 22.04]
and P = 14.074 [13.911, 14.236]. Testers were the least option checked
with P = 1.191 [1.138, 1.245]. Several isolated options were mentioned in
the “Others" field (e.g., Product Owner, Machine Learning Engineer, and Tech
Lead), altogether summing up 11% and not significantly influencing the overall
distribution (P = 11.021 [10.865, 11.177]).
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Figure 4.8: Roles addressing requirements of ML-enabled systems (N = 170)

4.4.2
RQ1.2: How are requirements typically elicited in ML-enabled system
projects?

As presented in Figure 4.9, respondents reported Interviews as the most
commonly used technique (P = 55.615 [55.382, 55.849]), followed (or
complemented) by Prototyping (P = 43.7 [43.433, 43.967]), Scenarios (P =
43.238 [42.997, 43.479]), Workshops (P = 42.663 [42.441, 42.885]), and
Observation P = 36.826 [36.584, 37.069]. A few options were mentioned
in the “Others" field (e.g., simulating system’s behavior, and simple meetings
with stakeholders), with a small proportion P = 6.45 [6.337, 6.563].

0 20 40 60

Interviews 

Prototyping 

Scenarios 

Workshops Meetings 

Observation 

Others 

E
li

ci
ta

ti
o

n
 M

e
th

o
d

Percentage of Answers

Figure 4.9: Requirements elicitation techniques of ML-enabled systems (N =
171)

4.4.3
RQ1.3: How are requirements typically documented in the ML-enabled
system projects?

Figure 4.10 shows Notebooks as the most frequently used documentation
format with P = 37.448 [37.213, 37.683], followed by User Stories (P
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= 36.169 [35.929, 36.409]), Requirements Lists (P = 29.773 [29.539,
30.007]), Prototypes (P = 24.26 [24.031, 24.489]), Use Case Models (P =
21.734 [21.546, 21.922]), and Data Models (P = 19.99 [19.791, 20.189]).
Surprisingly, almost 17% mentioned that requirements are not documented at
all P = 16.845 [16.672, 17.018]. A similar proportion uses Vision Documents
(P = 16.96 [16.791, 17.13]) and Goal Models (P = 16.919 [16.742,
17.097]). The least used options were ML Canvas (P = 8.757 [8.62, 8.893])
and Behavior-Driven Development (BDD) Scenarios (P = 2.276 [2.202,
2.35]). Several options were mentioned in “Others" (e.g., Wiki tools, Google
Docs, Jira) altogether summing up 8.8% (P = 8.784 [8.643, 8.925]).
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Figure 4.10: Requirements documentation of ML-enabled systems (N = 171)

4.4.4
RQ1.4: Which Non-Functional Requirements do typically play a major
role in terms of criticality in the ML-enabled system projects?

Regarding NFRs, practitioners show a significant concern with some ML-
related NFRs, such as Data Quality (P = 69.825 [69.603, 70.048]), Model
Reliability (P = 42.788 [42.584, 42.991]), and Model Explainability (P
= 37.97 [37.741, 38.2]). Some NFR regarding the whole system were also
considered important, such as System Performance (P = 40.667 [40.435,
40.9]), and Usability (P = 29.501 [29.272, 29.731]). A significant amount
of participants informed that NFRs were not at all considered within their
ML-enabled system projects (P = 10.667 [10.518, 10.817]). Lastly, in the
“Others" field (P = 1.749 [1.685, 1.814]), a few participants also mentioned
that they did not reflect upon NFRs as presented in Figure 4.11.

The remainder system-NFRs consist in System Reliability (P = 20.841
[20.637, 21.046]), System Maintainability (P = 20.64 [20.437, 20.844]),
System Security (P = 18.859 [18.684, 19.034]), System Compatibility (P =
15.951 [15.778, 16.124]), System Privacy (P = 13.058 [12.91, 13.206]),
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System Safety (P = 12.409 [12.255, 12.563]), and System Portability (P
= 7.586 [7.456, 7.716]). In the other hand, the remainder ML-related NFRs
were Model Accountability (P = 15.559 [15.39, 15.727]), Model Ethics
Fairness (P = 13.007 [12.857, 13.158]), Model Interactiveness (P = 8.867
[8.723, 9.012]), and Model Transparency (P = 19.021 [18.829, 19.214]).
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Figure 4.11: Critical Non-Functional Requirements of ML-enabled systems (N
= 169)

4.4.5
RQ1.5: Which activities are considered most difficult when defining
requirements for ML-enabled systems?

We provided answer options based on the literature on requirements
(WAGNER et al., 2019) and requirements for machine learning (VIL-
LAMIZAR; ESCOVEDO; KALINOWSKI, 2021), leaving the “Other" option
to allow new activities to be added. As shown in Figure 4.12, respondents con-
sidered that managing customer expectations is the most difficult task (P =
66.684 [66.464, 66.904]), followed by aligning requirements with data (P =
57.446 [57.22, 57.673]), resolving conflicts (P = 38.535 [38.303, 38.766]),
managing changing requirements (P = 35.649 [35.402, 35.895]), selecting
metrics (P = 33.992 [33.752, 34.231]), elicitation and analysis (P = 29.292
[29.062, 29.523]), documentation (P = 15.805 [15.637, 15.973]), new qual-
ity attributes (P = 14.167 [14.003, 14.331]), and verification task (P =
12.886 [12.733, 13.039]). In the “Others" field (P = 1.761 [1.7, 1.822]),
few participants mentioned their difficulty with customer expectations, but
others informed a not listed difficulty, the requirements traceability.
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Figure 4.12: Most difficult RE activities in ML-enabled systems (N = 171)

4.5
RQ2: Main problems faced during the problem understanding and require-
ments ML life cycle stage

Regarding the main problems faced by the participants during the Prob-
lem Understanding and Requirements stage, they emerged from open coding
applied to free text answers. Participants could inform up to three problems re-
lated to each ML life cycle stage. In total, 262 open-text answers were provided
for problems related to problem understanding and requirements.

We incorporated axial coding procedures to provide an easily understand-
able overview, relating the emerging codes to categories. We started with the
sub-categories Input, Method, Organization, People, and Tools, as suggested for
problems in previous work on defect causal analysis (KALINOWSKI; CARD;
TRAVASSOS, 2012). Based on the data, we merged the Input and People
categories, as it was difficult to separate between the two, given the concise
answers provided by the participants. We also renamed the Tools category into
Infrastructure and identified the need to add a new category related to Data.
It is noteworthy that these categories were identified considering the overall
coding for the seven ML life cycle stages, while in this paper, we focus on the
Problem understanding and Requirements stage.

Figure 4.13 presents an overview of the frequencies of the resulting
codes using a probabilistic cause-effect diagram, which was introduced for
causal analysis purposes in previous work (KALINOWSKI et al., 2010; KALI-
NOWSKI; MENDES; TRAVASSOS, 2011). While this representation provides
a comprehensive overview, the percentages are just frequencies of occurrence
of the codes (i.e., the sum of all code frequencies is 100%). Also, the highest
frequencies within each category are organized closer to the middle.

It is possible to observe that most of the reported problems are related
to the Input category, followed by Method and Organization. Within the
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Figure 4.13: Main problems faced during Problem Understanding and Require-
ments phase

Input category, the main problems concern difficulties in understanding the
problem and the business domain, and unclear goals and requirements. In
the Method category, the prevailing reported problems concern difficulties in
managing expectations and establishing effective communication. Finally, in
the Organization category, the lack of customer or domain expert availability
and engagement, and the lack of time dedicated to requirements-related
activities were mentioned. While we focus our summary on the most frequently
mentioned problems, it is noteworthy that the less frequent ones may still
be relevant in practice. For instance, computational constraints or a lack of
data quality (or availability) can directly affect ML-related possibilities and
requirements.

4.6
Concluding Remarks

In this chapter, we presented our study results, describing, firstly, the
practitioners’ demographics and perception about the Problem Understanding
and Requirements stage. Thereafter, we described the analyses regarding each
of our research questions, including both quantitative and qualitative data
analysis procedures.



5
Discussion

5.1
Introduction

In this chapter, we discuss the threats to the validity of our survey
design and analysis. Furthermore, we also discuss our main findings, their
implications for researchers and practitioners, and their relation to previous
literature. Finally, we investigate a potential country-related bias.

5.2
Threats to Validity

We identified some threats while planning, conducting, and analyzing
the survey results. Hereafter, we list these potential threats, organized by the
survey validity types presented in (LINAKER et al., 2015).

5.2.1
Face and Content Validity

Face and content validity threats include bad instrumentation and inade-
quate explanation of constructs. To mitigate these threats, we involved several
researchers in reviewing and evaluating the questionnaire with respect to the
format and formulation of the questions, piloting it with 18 Ph.D. students for
face validity and with five experienced data scientists for content validity.

5.2.2
Criterion Validity

Threats to criterion validity include not surveying the target population.
We clarified the target population in the consent form (before starting the
survey). We also considered only complete answers (i.e., answers of participants
that answered all four survey sections) and excluded participants that had no
experience with ML-enabled system projects.

5.2.3
Construct Validity

We ground our survey’s questions and answer options on theoretical back-
ground from previous studies on RE (FERNÁNDEZ et al., 2017; WAGNER et
al., 2019) and a literature review on RE for ML (VILLAMIZAR; ESCOVEDO;
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KALINOWSKI, 2021). A threat to construct validity is inadequate measure-
ment procedures and unreliable results. To mitigate this threat, we follow rec-
ommended data collection and analysis procedures (WAGNER et al., 2020).

5.2.4
Reliability

One aspect of reliability is statistical generalizability. We could not con-
struct a random sample systematically covering different types of profession-
als involved in developing ML-enabled systems, and there is yet no gener-
alized knowledge about what such a population looks like. Furthermore, as
a consequence of convenience sampling, the majority of answers came from
South America and Europe. Nevertheless, the experience and background pro-
files of the subjects are comparable to the profiles of ML teams, as shown
in Microsoft’s study (KIM et al., 2017). To deal with the random sampling
limitation, we used bootstrapping and employed confidence intervals, conser-
vatively avoiding null hypothesis testing. Another reliability aspect concerns
inter-observer reliability, which we improved by including independent peer
review in all of our qualitative analysis procedures and making all the data
and analyses openly available online in our open science repository (ALVES et
al., 2023a).

5.3
Main findings and implications

The survey findings reveal an important aspect within the ML-enabled
systems context, which is the distribution of roles in RE activities. In tradi-
tional software projects, the role of Requirements Engineer is not prominent
once its duties mix with some other positions such as developers, architects,
project managers, or consultants (HERRMANN, 2013). Moreover, in some
North American and European companies, it is commonplace to see the job ti-
tle Business Analyst instead of Requirements Engineer to handle requirements
(WANG et al., 2018).

However, in ML-enabled systems, a notable transition is observed, with
project leaders and data scientists taking the lead in RE efforts. Contrary to
expectations, the roles of business analysts, developers, solution architects, and
requirements engineers are less associated when addressing requirements. It is
worth mentioning that despite having a significant proportion of participants
identifying themselves as Business Analysts, we still have a predominant
association between addressing requirements with Project Leaders and Data
Scientists.
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The literature suggests that RE can help to address problems related to
engineering ML-enabled systems, but the software engineering practices are not
yet well established within this domain in practice. This could be pointing to
the low participation of traditional roles on RE for such systems. Nevertheless,
the involvement of project leaders and data scientists as key RE contributors
could reflect the nature of ML projects, where domain expertise and data-
driven insights are pivotal. This shift in responsibilities raises questions about
the evolving dynamics of cross-functional collaborations within ML endeavors
and prompts further exploration into how such roles influence the shaping of
ML-enabled systems.

The survey also revealed that practitioners typically use traditional re-
quirements elicitation techniques (interviews, prototyping, scenarios, work-
shops, and observation), even with a text-free option available for practitioners
to inform some missing or new elicitation methods. Comparing the results to
the elicitation techniques reported for traditional RE (WAGNER et al., 2019),
a noticeable difference is that requirements workshops are slightly less com-
monly used in ML-enabled system contexts. This could be related either to the
absence of traditional RE positions in the elicitation phase (e.g., requirements
engineer or business analyst), who would be typically familiar with conduct-
ing such workshops, or to the lack of specific adaptations on such workshop
formats for ML-enabled systems.

With respect to requirements documentation, Notebooks, which are
interactive programming environments that can be used to process data and
create ML models, appear as the most used tool for documenting requirements.
Again, this could be a symptom of the absence of a requirements engineer and
the lack of awareness of RE specification practices and tools. Furthermore, a
proportion of almost 17% mentioned that requirements were not documented
at all. Given that in conventional contexts, problems related to requirements
are common causes of overall software project failure (FERNÁNDEZ et al.,
2017), this apparent lack of RE-related maturity regarding documentation may
also be causing pain in ML-enabled system contexts.

Traditional artifacts, such as user stories, requirements lists, prototypes,
and use case models, are also used in the ML-enabled systems context,
but significantly less than in the conventional software context (WAGNER
et al., 2019). Goal-oriented models are a common tool for documenting
Self-Adaptative-Systems (SAS) projects (BELANI; VUKOVIĆ; CAR, 2019).
However, within the ML-enabled system context, it is as important as not
documenting requirements. Even specific approaches, such as the ML Canvas,
do not relevantly represent a current practice for documenting the requirements
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of ML-enabled systems.
Regarding NFRs, practitioners express considerable concerns with spe-

cific ML-related NFRs, such as data quality, model reliability, and model ex-
plainability, which is something previously discussed in the literature (VOGEL-
SANG; BORG, 2019; HORKOFF, 2019; HABIBULLAH; GAY; HORKOFF,
2023). In spite of these expected model concerns, we found practitioners rec-
ognizing the significance of overall system-related NFRs. In other words, the
system which includes the ML model may be invariant to problems on this
specific part, it needs to be reliable, useful, secure, and maintainable. Besides
systems and model concerns, more than 10% of practitioners do not even con-
sider NFRs in their ML-enabled system projects. Again, given the potential
negative impacts of missing NFRs on software-related projects (FERNÁNDEZ
et al., 2017), this can be seen as another indicator of the lack of overall aware-
ness of the importance of RE in the industrial ML-enabled systems engineering
context.

The survey also revealed the most difficult activities perceived by
practitioners in defining requirements for ML-enabled systems. The difficul-
ties reported by practitioners mix with previous literature, but now comes
in a wider industrial scope. Managing customer expectations (ISHIKAWA;
YOSHIOKA, 2019), aligning requirements with data (NAHAR et al., 2023;
VILLAMIZAR; ESCOVEDO; KALINOWSKI, 2021), changing requirements
(KHALAJZADEH et al., 2018), and selecting proper metrics (VOGELSANG;
BORG, 2019) were previously reported as difficulties, which highlight the im-
portance of effective communication, a deep understanding of customer needs,
and domain and technical expertise to bridge the gap between aspirations and
technological feasibility.

Finally, we contributed to the RE-related problems faced by practitioners
in ML-enabled system projects. The main issues relate to difficulties in prob-
lem and business understanding, managing expectations, and low customer/-
domain expert availability/engagement. These issues clearly have comparable
counterparts in the conventional RE problems (FERNÁNDEZ et al., 2017). In
Table 5.1, we show this strong relationship between problems in ML-enabled
systems and traditional contexts. As comparable problems may have com-
parable solutions, adopting established RE practices (or adaptations of such
practices) may help improve ML-enabled system engineering.
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Table 5.1: Comparison between problems on ML-enabled and traditional
systems

Traditional RE Problem ML RE Problem

Incomplete and/or hidden re-
quirements

[Input] Incomplete/incorrect requirements

Communication flaws between
project team and customer

[Method] Communication

Moving targets (changing goals,
business processes, and/or re-
quirements)

[Input] Unclear goals

Underspecified requirements that
are too abstract

[Input] Unclear requirements

Timeboxing/Not enough time in
general

[Organization] Lack of time

Communication flaws within the
project team

[Organization] Definition of roles and
responsibilities

Stakeholders with difficulties in
separating requirements from
known solution designs

[Organization] Lack of analytical thinking

Insufficient support by customer [Organization] Low client/domain expert
availability/engagement

Inconsistent requirements [Input] Requirements overthinking
Weak access to customer needs
and/or business information

[Organization] Lack of resources and
references

5.4
Brazil Bias Investigation

Our convenience sampling strategy led us to a significant amount of
answers from Brazil. As informed in our Threats to Validity, our results
regarding practitioners’ backgrounds are comparable with previous literature,
and we strongly believe that the ML-enabled system context is globalized.
Thus, participants’ nationality should not have a big impact on wider analyses.
Furthermore, the purpose of this dissertation is not to check Brazil or any other
country’s influence on RE for ML-enabled systems. To analyze if the most
frequent country was biasing our results, we also analyzed our data by applying
blocking to remove the country with more participants (Brazil). Hence, we
removed Brazilian answers from questions that involved quantitative analyses
and verified how similar these results were to the previous ones.

Firstly, when removing Brazilian answers, we observed that the distribu-



Chapter 5. Discussion 43

tion of roles addressing requirements didn’t change. Projects Leaders and Data
Scientists still lead this task, with a small leading difference between them in
the version without Brazil, as presented in Figure 5.1.
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Figure 5.1: RQ1.1 with and without Brazil

In terms of elicitation methods, when discarding Brazilian answers, we
kept the same distribution of methods, with an observable difference in the
usage of Interviews. Without Brazil, Prototyping, and Scenarios are almost
equally used, and with Brazil, these methods were slightly more distant, as
presented in Figure 5.2. This may indicate that in Brazil Interviews seem to
be more commonly used as the main elicitation method.
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Figure 5.2: RQ1.2 with and without Brazil

Regarding RE documentation, when not considering Brazilian partici-
pants, we had some significant direct differences but preserved the underlying
conclusions. Notebooks left the leading position but was still close to the new
leading documentation artifact, User Stories. Other documentation tools were
previously close, and without Brazil, minor switches happened, such as Use
Case Models and Prototypes; and Goal Models and Data Models. ML Canvas
and BDD Scenarios are still the least used artifacts.
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Figure 5.3: RQ1.3 with and without Brazil

With respect to NFRs, the main conclusion was still the same with
or without Brazil, as presented in Figure 5.4. Few NFRs changed positions
but were definitely close to what was previously found, such as Model Trans-
parency, Model Accountability, System Maintainability, and System Compati-
bility. Despite these changes, the NFRs proportion between them is in a range
of very close values, thus, these changes have little impact.
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Figure 5.4: RQ1.4 with and without Brazil

Lastly, regarding the most difficult activities when dealing with RE, we
also had minor changes. Without Brazil, the top three difficulties were pre-
served, however, we had direct switches between Selecting Metrics and Chang-
ing Requirements; and between New Quality Attributes and Documentation.
Their previous proximity allows us to conclude that the latent difficulties were
mostly similar.
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Figure 5.5: RQ1.5 with and without Brazil

5.5
Concluding Remarks

In this chapter, we presented our main contributions, which shed light
on some new aspects and reaffirmed others from the previous literature in a
wider scope. We also discussed the main threats to the validity of our study
and showed that Brazil’s prevalence of participants’ nationality didn’t affect
the answers’ distribution, increasing the confidence in the generalizability of
our findings.
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Conclusion

6.1
Contributions

Literature suggests that RE can help to tackle challenges in ML-enabled
system engineering (VILLAMIZAR; ESCOVEDO; KALINOWSKI, 2021). Re-
cent literature studies (e.g., (VILLAMIZAR; ESCOVEDO; KALINOWSKI,
2021; AHMAD et al., 2021; NAHAR et al., 2023)) and industrial studies (e.g.,
(VOGELSANG; BORG, 2019; SCHARINGER et al., 2022)) on RE for ML-
enabled systems have been important to help to understand the literature focus
and industry needs. However, the studies on industrial practices and problems
are still isolated and not yet representative.

We complement these studies, aiming at strengthening empirical evidence
on current RE practices and problems when engineering ML-enabled systems,
with an industrial survey that collected responses from 188 practitioners in-
volved in engineering such systems. We applied bootstrapping with confidence
intervals for quantitative statistical analysis, and open and axial coding for
qualitative analysis of RE problems.

Our analyses confirmed some of the findings of previous ML-enabled
system studies, such as the relevance NFRs related to data quality, model re-
liability, and explainability (VOGELSANG; BORG, 2019; HORKOFF, 2019;
HABIBULLAH; GAY; HORKOFF, 2023), and challenges related to customer
expectation management and vagueness of requirements specifications (VIL-
LAMIZAR; ESCOVEDO; KALINOWSKI, 2021; NAHAR et al., 2023). How-
ever, we also shed light on some new and intriguing aspects. For instance, the
survey revealed that project leaders and data scientists are taking the reins
in RE activities for the ML-enabled systems and that interactive Notebooks
dominate requirements documentation. With respect to the problems, the main
issues relate to difficulties in problem and business understanding, difficulties
in managing expectations, unclear requirements, and lack of domain expert
availability and engagement.

Overall, when comparing RE practices and problems within ML-enabled
systems with conventional RE practices (WAGNER et al., 2019) and problems
(FERNÁNDEZ et al., 2017), we identified significant variations in the practices
but comparable underlying problems.
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6.2
Limitations

Improving sample size and representativeness is a common opportunity
for improvement in survey research. We understand that our study could
benefit from having a larger sample and a more meaningful representation of
other countries that are prominent within the ML-enabled systems industry,
such as the US, China, and India.

Furthermore, our data collection strategy (convenience sampling) led us
to a prevalence of respondents from the survey’s collaborators’ nationalities,
especially Brazil. Nevertheless, we showed that removing data from Brazil
didn’t affect the contemporary practices findings. However, we did not conduct
a similar analysis for the qualitative analyses.

6.3
Future Work

Future work includes developing solutions to address reported problems
and identified concerns, such as the lack of proper documentation methods
and missing NFRs. The close relation of traditional RE problems to the ones
in RE for ML-enabled systems can help to guide such solution proposals. As
comparable problems may have comparable solutions, we put forward a need
to adapt and disseminate RE-related practices for engineering ML-enabled
systems.

6.4
Research Publications

Table 6.1 lists the research papers written that are related to this
dissertation.

Table 6.1: Publications related to this dissertation

Paper Title Venue Status

Status Quo and Problems of Requirements En-
gineering for Machine Learning: Results from an
International Survey (ALVES et al., 2023b)

PROFES
2023

Accepted

ML-Enabled Systems Model Deployment and
Monitoring: Status Quo and Problems

SWQD
2024

Submitted
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